Главная  Материалы 

 

Состав - структурные элементы и свойства древесины

 

Проект производства работ следует разрабатывать на вариантной основе, т. е. сопоставляя эффективность вариантов основных решений. Задачи, решаемые при проектировании строительных технологий:

 

- применение передовых строительных конструкций;

 

- поточное производство работ с равномерной загрузкой оборудования и рабочих;

 

- разработка прогрессивных методов организации строительства;

 

- применение передовых технологий и методов производства работ, совмещение работ по возведению каркаса здания с общестроительными;

 

- эффективные средства механизации производства работ и комплексная механизация для сокращения ручного труда;

 

- эффективные схемы комплектации объекта конструкциями;

 

- рациональные решения по доставке и складированию конструкций;

 

- оборудование площадки укрупнительной сборки конструкций;

 

- обеспечение непрерывности производства работ, исключение технологических перерывов;

 

- обеспечение прочности и устойчивости сооружения на всех этапах производства работ;

 

- обеспечение машин и механизмов энергоресурсами, водой;

 

- использование рационального и универсального монтажного оснащения;

 

- широкое применение средств малой механизации;

 

- применение прогрессивных временных сооружений — бытовок передвижного, контейнерного и сборно-разборного типов;

 

- сокращение числа и площадей приобъектных складов;

 

- монтаж с транспортных средств;

 

- организация возведения каркаса и выполнения сопутствующих работ в 2...3 смены;

 

- обеспечение нормальных условий для безопасного труда и отдыха рабочих.

 

Проектирование технологий возведения надземной (подземной, отдельной секции и т. п.) части здания, сооружения должно базироваться на следующих принципах:

 

- изучении объемно-планировочного и конструктивного решений здания;

 

- предварительном анализе способов производства работ, приемлемых для использования основных монтажных механизмов;

 

- составлении спецификации сборного железобетона, определении номенклатуры и максимальной массы изделий;

 

- определении потребности в материалах и полуфабрикатах (общее количество и необходимость поставки отдельных материалов в конкретные сроки);

 

- расчете трудоемкости работ, примерных затрат машинного времени;

 

- определении допустимых сроков возведения каркаса здания;

 

- первичном анализе и оценке вышеуказанных материалов.

 

В оптимальном технологическом решении должны быть, в частности, отражены принципиальные, с точки зрения производства работ, моменты:

 

- необходимое число монтажных кранов и число смен монтажа в сутки;

 

- выбор наиболее подходящих по техническим параметрам и наиболее дешевых при экономическом сравнении монтажных механизмов;

 

- подбор современных, наиболее надежных, универсальных и индустриальных средств механизации, такелажа, приспособлений.

 

Проектирование технологий возведения здания является завершающим этапом работ, базирующимся на принятии всех первичных решений.

 

Основной, обобщающий документ — календарный график (план) производства работ. Его составляют на основе объемов монтажных и сопутствующих работ, их трудоемкости и принятых методов производства работ, он устанавливает:

 

- последовательность, взаимосвязь и сроки выполнения отдельных работ;

 

- число применяемых монтажных кранов и сроки их использования;

 

- потребность в рабочих кадрах на период возведения каркаса здания в целом и по специальностям;

 

- принимаемое число смен работы в сутки и номенклатуру работ, выполняемых в ту или иную смену;

 

- общую продолжительность возведения каркаса здания в днях;

 

В углеводную часть древесины входит целлюлоза как ее основной компонент по объему в стволе дерева и нецеллюлозные полисахариды, именуемые гемицеллюлозами. Всю углеводную часть в целом называют холоцеллюлозой. Ее можно выделить из древесины в виде волокнистого материала обработкой окислителями (кислотами).

 

Углеводы и лигнин — это высокомолекулярные вещества, или полимеры. На них распространяются закономерности, характерные для этих соединений, причем они находятся в теснейшей взаимосвязи и образуют единую высокоорганизованную полимерную систему древесинного вещества.

 

Древесина состоит в основном из органических веществ, к которым полностью приложимы законы органической химии. Юна является продуктом растительного происхождения и как биологический объект слагается из клеток. Стенки клеток древесины на 99% сложены из органических соединений, представленных у хвойных пород примерно на 70% углеводами, а у лиственных — на 80%. Углеводы, как известно, представляют группу природных веществ, образованных тремя элементами: углеродом, водородом и кислородом. К обширной группе этих веществ принадлежит сахар, а примером сравнительно простых углеводов может служить глюкоза (состав молекулы которой выражается формулой СбН^Об), иначе называемая моносахаридом. Молекулы простых Сахаров способны соединяться в растениях под влиянием ферментов в более крупные образования, например дисахарид: 2СбН120б = С12Н22О11 + ШО, а при большом количестве молекул моносахарида — в полисахариды, например с образованием крахмала (СбНю0 и или целлюлозы с тем же выражением молекулы, но при более высоком значении п, чем у крахмала;

 

Они способны лишь пропитывать стенки клеток, а в основном содержатся в их полостях и в межклеточном пространстве. В отличие от углеводов и лигнина, экстрактивные вещества — низкомолекулярные соединения.

 

Около 30% древесины составляют вещества ароматической природы, известные под названием лигнина.

 

Целлюлоза может быть выражена эмпирической формулой [CeHioOsln или в другом виде [СбН70г(ОН)з] п, где п — степень полимеризации, которая у древесной целлюлозы достигает значений от 300 до 6000 и более. Она представляет собой линейный гетероцепной стереорегулярный однородный полимер, имеющий большое число гидроксильных групп ОН, образующих водородную связь. Этот тип химической связи между водородным атомом гидроксила одной цепи и кислородным атомом гидроксила соседней цепи придает повышенную жесткость полимеру, так как «стягиваются», ориентируются цепные молекулы в целлюлозных волокнах.

 

К небольшой части древесины (2—4%) относятся экстрактивные вещества, которые не являются составляющими клеточной стенки.

 

Древесные целлюлозные волокна имеют спиральную структуру и содержат примерно 55—65% кристаллической и 25—35% аморфной (гемицеллюлозной) части, причем у хвойных пород аморфной части меньше, у лиственных пород — больше (28—35%). Согласно другой теории, содержание кристаллической фазы в природной целлюлозе значительно больше, тогда как аморфной — не выше 5—10% и ее относят к дефектам упорядоченности. В этом случае полагают, что целлюлоза является однофазным кристаллическим веществом. Так или иначе, но главное, что необходимо учитывать, древесина — высококристаллическое вещество, имеющее форму продольных спиральных волокон, которые в деловой древесине выполняют роль своеобразного «армирующего» компонента, повышающего прочность материала на растяжение, чему способствует также их упорядоченное расположение.

 

Следует несколько подробнее остановиться на характеристике главных структурных элементов древесины. Они, в совокупности с порами, капиллярами, контактными зонами и другими элементами микро- и макроструктуры, предопределяют основные свойства древесного материала.

 

Лигнин — аморфное вещество; им обогащаются клеточные стенки с эффектом одревеснения. Он содержится в серединной пластинке клеточной стенки, но большая его часть находится во вторичной стенке (слое). Обнаруживается лигнин в этих двух слоях стенки по окрашиванию в красный цвет при воздействии на клеточные стенки химическим реагентом (солянокислородным флороглюцианом), Электронная микроскопия позволила, однако, не только по цветной реакции, но и на снимках увидеть, что лигнин заполняет также и межклеточные пространства. Своим присутствием он придает некоторую гидрофобность, но в целом она незначительна, и древесина относится к гидрофильным материалам, особенно древесина лиственных пород.

 

Кроме водородных связей, для целлюлозы характерно также внутри- и межмолекулярное взаимодействие (т. е. силами Ван-дер-Ваальса), что, наоборот, уменьшает степень жесткости, и молекулы целлюлозы могут принимать различные конформации (расположения). Являясь основным веществом древесины, целлюлоза образует в структурном отношении слоистую клеточную оболочку (стенку), способную при механической обработке распадаться на тонкие целлюлозные волоконца-фибриллы, а при химической — на микрофибриллы. Фибрилла имеет кристаллическую структуру, так как для нее типичным является регулярное расположение молекул, характерное для молекулярной кристаллической решетки. Микрофибриллы также в основном сохраняют кристаллические (ориентированные) области. В некоторой части кристаллическая фаза перемежается с хаотическим (аморфным) расположением макромолекул, в ней отсутствует четко выраженная ориентация в микрофибриллах, а Цепи значительно короче. Эту часть именуют гемицеллюлозой. Степень полимеризации макромолекул гемицеллюлозы составляет всего 100—20 Короткие цепи нередко попадаются среди кристаллических участков целлюлозного волокна, и тогда они достаточно прочно связываются с целлюлозой, образуя целлюлозаны, но оставаясь по существу гемицеллюлозой (ксиланы, маннаны).

 

Экстрактивные вещества в отличие от главных компонентов извлекаются нейтральными растворителями — водой, обычными органическими растворителями. Хотя их немного, но они придают древесине цвет, запах, вкус, иногда токсичность, помогают дереву сопротивляться гниению, поражению грибами и пр. Среди экстрактивных веществ — смолы и смоляные кислоты, танниды (дубители), эфирные масла, красители, камеди, фитостерины, белки и пр. Содержание смол в лиственных породах до 1%, а в хвойных может быть до 20%. В каждой породе присутствуют только некоторые экстрактивные вещества, по-разному распределяясь внутри дерева, например фенольные вещества — в ядровой части, а сахара, жиры и др. — в заболонной древесине. Имеется Небольшая доля и минеральных веществ (до 1%), поступающих из почвы через корневую систему и проводящие ткани.

 

Лигнин как другой структурообразующий компонент древесины — тоже природный полимер, представляет собой высокомолекулярную ароматическую часть, количество которой в древесине хвойных пород составляет 28—30%, а в древесине лиственных пород — 18—24%. В древесине он был открыт более 145 лет назад, но его весьма сложное строение до сих пор остается не полностью выясненным. Полагают, что это смесь нерегулярных разветвленных полимеров сетчатой структуры. Присутствие лигнина устанавливают по цветным реакциям. От целлюлозы отличается повышенным содержанием углерода — 60—65% по сравнению с 44% в целлюлозе, что обусловлено его ароматической природой. Из девяти атомов углерода, составляющих структурную единицу (фенилпропановую) лигнина, шесть принадлежат ароматическому кольцу. В химическом отношении лигнин — реакционно-способный полимер. По сравнению с целлюлозой лигнин обладает меньшей химической стойкостью, легче окисляется.

 

Структура древесины в первом приближении представляет собой конструкционное сочетание целлюлозы с лигнином. Волокна целлюлозы обладают высокой прочностью на разрыв, но легко изгибаются ( 7. . Лигнин объединяет их в единое целое с помощью водородных и ван-дер-ваальсовых сил связи и когезии, поэтому в совокупности древесина — по существу природный органический материал с конгломератным типом структуры, в котором имеются матричная пространственная сетка из лигнина и кристаллический волокнистый наполнитель в виде целлюлозы. Эта структура хорошо, например, видна на микроснимке, полученном американским ученым Э. Келли для среза осины при увеличении в П000 раз ( 7. . Темная полоса — лигнин, менее темная — стенка целлюлозной клетки и светлая область — полость клетки.

 

Оба основных компонента древесины — целлюлоза и лигнин — взаимодействуют между собой. Характер их взаимодействия еще полностью не раскрыт. Вначале предполагалось наличие чисто механической связи лигнина с углеводами в стенках (слоях) клетки. Такая теория называлась инкрустационной. Позднее было установлено, что невозможно ни извлекать углеводы из древесины без одновременного частичного удаления лигнина, ни полностью удалить лигнин из древесины без удаления некоторого количества углеводов. Очевидно, что это возможно только при их химическом взаимодействии, тем более что из древесины удалось выделить лигноуг-леводные комплексы. Большинство исследователей склоняется к предположению о существовании химической связи лигнина с геми-целлюлозой (ксиланом, маннаном и другими полисахаридами), хотя поддерживается мнение также о возможной химической связи лигнина с целлюлозой. В целом, однако, часть лигнина находится в древесине в свободном состоянии.

 

Таким образом, древесина слагается из двух основных компонентов с присутствием небольших количеств других веществ, по-видимому, мало влияющих на формирование общей структуры.

 

Подобно искусственным конгломератам, древесина содержит капилляры и поры различных размеров; в период жизни дерева они имеют большое значение для передвижения воды и питательных соков, их накопления и пр. Крупные капилляры являются полостями и порами стенок, капилляры и поры тонкие и мельчайшие находятся между фибриллами, микрофибриллами и внутри микрофибрилл.

 

Такое различие капилляров отражается на характере контакта их с водой. Крупные капилляры могут заполняться водой, которая мало влияет на состояние древесины и ее качество (механические свойства) как строительного материала. Эта влага сравнительно легко приходит в капилляры и поры, особенно при контакте дерева с водой, заполняет полости и может составлять до 100—200% к массе абсолютно сухой древесины, но она сравнительно быстро и легко удаляется из них при сушке. Тонкие поры и капилляры заполняются не только при контакте с водой, но и в условиях влажного воздуха в связи с гигроскопичностью древесины и по законам капиллярных сосудов. Гигроскопическая влага сорбируется на стенках клеток, частично переходит в коллоидно-связанную с веществом дерева. Предельное насыщение древесины гигроскопической влагой составляет 25—35% (в среднем 30%) к массе абсолютно сухой древесины, называемое пределом насыщения. Насыщение гигроскопической влагой до этой предельной точки сопровождается набуханием древесины, изменением (ухудшением) ее физических и механических свойств. Увеличение влаги свыше 30%-ного ее содержания на механических свойствах древесины почти не отражается; не увеличивается и объем ее за счет набухания.

 

Коробление древесины

 

Кинетику изменения показателей свойств древесины по мере ее высыхания можно изобразить графически в системе прямоугольных координат. Для этого на параллельно расположенных осях ординат необходимо отложить в соответствующих масштабах различные показатели свойств (на рисунке условно принята одна ось ординаты для всех свойств), а на оси абсцисс — влажность, еще лучше структурный параметр в виде, например, отношения объема V свободной влаги, равного Мв/рв или гигроскопической Мг.в/рв отнесенных к суммарной площади стенок пор и капилляров, постоянной для данной породы дерева. Очевидно, что отношение У/Асум 5, где 8 — усредненная толщина пленки свободной или гигроскопической влаги; рв — плотность воды.

 

Электронная микрофотография

 

При сушке древесины трудно испаряется гигроскопическая (связанная) влага от клеточных стенок насыщения волокон, причем объем древесины уменьшается в связи с усадкой и уплотнением клеточных оболочек. Особенно трудно удаляются последние 4—6% гигроскопической влаги, так как она ориентированно закреплена (адсорбирована) в монослое молекулами целлюлозы. Возникают водородные связи между гидроксилами целлюлозы и водой, тогда как другая большая часть гигроскопической влаги (20—25%) находится под влиянием капиллярной конденсации. С приближением при сушке к температуре 105°С масса древесины сохраняет постоянное значение, что и принимают за абсолютно сухое состояние древесины. Абсолютно сухая древесина состоит из двух компонентов — древесинного вещества и воздуха. Фактически около 1% гигроскопической влаги в абсолютно сухой древесине сохраняется, но за счет относительно прочных водородных связей она не снижает ее качественных показателей. Дальнейшее повышение температуры вызывает более или менее глубокое разложение целлюлозы — деструкцию/особенно в присутствии воздуха и влаги. При умеренном нагревании (120—180°С) изменяется цвет целлюлозы, снижается ее прочность, а при более высокой температуре (230—240°С) протекают химические реакции с изменением элементарного состава целлюлозы. При температуре, близкой к 300°С,структура переходит из кристаллической формы в аморфную, а при дальнейшем повышении температуры образуются целлюлозный уголь и жидкие продукты распада (уксусная кислота, ацетон, формальдегид, муравьиная кислота и др.). Лигнин более устойчив к термолизу, чем целлюлоза, за счет его ароматического строения. Однако и он к моменту обугливания целлюлозы подвержен экзотермическому распаду с потерей своих первоначальных свойств. Следовательно, при нагревании выше 105—110°С непрерывно протекают процессы деструкции, а древесина сравнительно быстро теряет свои высокие физико-механические свойства, которые она имела в абсолютно сухом состоянии.

 

R — прочность, т, — средняя плотность, X — теплопроводность, с — электропроводность, 8 — толщина пленки воды, П — пористость

 

По мере испарения свободной влаги в свежесрубленной древесине, когда ее влажность составляет обычно от 40 до 100% и выше, показатели свойств остаются постоянными до предела насыщения волокон. При постепенном высушивании в пределах содержания гигроскопической влаги с утоныпением полимолекулярных , слоев ( воды на развитой поверхности тончайших капилляров и пор показатели свойств непрерывно улучшаются.

 

На левой ветви получаемой экстремальной кривой показаны значения свойств по мере развития деструкционных процессов при дальнейшем повышении температуры древесины (свыше 105 °С).

 

Проявление закона створа в древесине при отсутствии влаги:

 

К моменту высыхания, когда влажность становится равной 1% и меньше, а гигроскопическая вода достаточно прочно химически связана с целлюлозой в монослоях, причем отношение V*/Acyu принимает минимальное значение, близкое к нулю, тогда показатели свойств становятся экстремальными: прочность, выражающая любые ее значения (при сжатии, растяжении и т. п.), — наибольшей; упругость — также наибольшей, тогда как пластичность и общая деформация — наименьшими, теплопроводность и электропроводность — наименьшими (в сухом состоянии древесина является хорошим диэлектриком); пористость (П), коэффициент диффузии при постоянной температуре — наибольшими, плотность — наименьшей и т. д. (7. . Числовые значения этих экстремумов получают экспериментальным путем при испытании образцов или расчетным, применяя некоторые известные зависимости. В них значение влажности для получения экстремальной величины принимается равным нулю {W = .

 

Реальные условия развития дерева не только благоприятствовали его росту, но и вызывали необходимость в приспособляемости к механическим напряжениям, особенно древесных волокон. Так, сопротивляемости ветровым нагрузкам благоприятствовало: развитие слоистого строения древесины с правильным чередованием прослоек более мягкой весенней и более жесткой летней древесины; повышение модуля упругости древесины ствола от вершины к комлю (основанию) ( 7. , сбег толщины ствола от комлевой части его к вершине при высокой прочности на растяжение корней. Прочные наружные слои ствола при меньшей прочности сердцевины обеспечивают дереву надежную сопротивляемость большим вертикальным нагрузкам от массы кроны. В результате нормального роста древесина хвойных и лиственных пород набирает комплекс анатомических элементов, общим для которых является упорядоченность волокнистой структуры и клеточного строения древесины, утончаются стенки-прослойки матричной части из лигнина, наступает в процессе значительной кристаллизации целлюлозы и, отчасти, гемицеллю-лозы общая упорядоченность расположения молекул с анизотропией свойств по главным структурным направлениям, формируется оптимальная структура с соответствующей закономерностью створа с комплексом экстремальных значении свойств. В этом проявляется структурная детерминация развития растений.

 

Из графика следует, что при определенном наборе структурных параметров в абсолютно сухой древесине закономерно возникает комплекс экстремальных значений тех физических и механических свойств, которые непосредственно связаны со структурой. Такой комплекс экстремумов согласно закону створа возможен только при оптимальной структуре. Следовательно, под влиянием внешних и внутренних детерминантов в период роста дерева происходит постепенная оптимизация структуры древесины эволюционным путем. К внешним, воздействовавшим на растущее дерево, следует отнести: силовые — от ветровой нагрузки и массы кроны, утяжеленной атмосферными осадками; тепловые — от переменной температуры окружающей среды; воздействие влаги, солнечного света и др. К внутренним детерминантам относятся: перемещение влаги с растворенными минеральными веществами из почвы; перемещение и создание запаса питательных веществ; процесс фотосинтеза в кроне и др.

 

Результаты экспериментального определения модуля упругости Е при изгибе древесины сосны на растущем дереве (по Юлинену): х — расстояние от комля; 1— высота ствола

 



Песколовки. Санитарно-химические показатели загрязнения сточных вод. "шлягер" каркаса. Систематизация факторов. Системы водоотведения на подтапливаемых территориях. Склады арматурной стали. Скользящая опалубка.

 

Главная  Материалы 



0.0017