Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 [ 9 ] 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

2.i Boost Convener Example

Fig. 2.17 Variation of inductor current dc component / wiltl duty cycle, boost converter.


(2.36)

Collecting terms, and equating the result to zero, leads the steady-state result

-[d + D} + № = 0 (2.37)

By noting that {D + D) = 1, and hy solving for the inductor current dc component 7, one obtains

(2.38)

So the inductor current dc component / is equal to the load current, V/R, divided by 1У. Substitutionof Eq. (2.34) to eliminate Vyields

(2.39)

This equation is plotted in Fig. 2.17. It can be seen that the inductor current becomes large as D approaches 1.

This inductor current, which coincides with the dc input current in the boost converter, is greater than the load current. Physically, this must be the case: to the extent that the converter elements are ideal, the converter input and output powers are equal. Since the converter output voltage is greater than the input voltage, the input current must likewise be greater than the output current. In practice, the inductor current flows through the semiconductor forward voltage drops, the inductor winding resistance, and other sources of power loss. As the duty cycle approaches one, the inductor current becomes very large and these component nonidealities lead to large power losses. In consequence, the efficiency of the boost converter decTeases rapidly at high duty cycle.

Next, let us sketch the inductor current (,(f) waveform and derive an expression for the inductor current ripple Aig. The inductor voltage waveform rj(t) has been already found (Fig. 2,15), so we can sketch the inductor current waveform directly. During the first subinterval, with the switch in position 1, the slope of the inductor current is given by

dt - 1. ~ I

(2,40)

Likewise, when the switch is in position 2, the slope of the inductor current waveform is



Kig, 2.18 Doosl coiivenei- iiiductnr current waveftirm Дг).


dt ~ L ~ L

(2.41)

The inductor current waveforrn is sltetclied in Fig. 2.IS. During the first .subinterval, tlie change in inductor current, 2A(j, is equal to the .slope multiplied by the length tif the subinterval, or

tAl)

Solution for Arleads to

(2.43)

This expression can be used to select the inductor value L such that a given value of Д(, is obtained.

Likewise, the capacitor voltage vit] waveform can be .sketched, and an expression derived for the [)utput voltage ripple peak magnitude Av. The capacitor current waveform ijit) is given in Fig. 2.15. During the first subinterval, the slope of the capacitor voltage waveform vifj is

dt ~ С НС

(2.44)

During the second subinterval, the slope is

dt ~ С ~C RC

(2.45)

The capacitor voltage waveform is sketched in Fig, 2.19. During the first subinterval, the change jn capacitor voltage, -2Ai, is equal to the slope multiplied by the length of the subinterval:

-2Av--DT

Solution for Дт yields

(2.46)

Fig, 2.19 Boost converter output voltage

waveform v{t).




2.4 Сик CoimimExample

(2.47)

This expression can be used to select the capacitor value С to obtain a given output voltage ripple peak magnitude Av.

2.4 <tVK CONVERTER EXAMPLE

As a second example, consider the converter of Fig. 2.20(a). This converter performs a dc conver-.sion function similar to the buck-boost converter: it can either increase or decrease the magnitude of the dc voltage, and it inverts the polarity. A practical realization using a transistor and diode is illustrated in Fig. 2.20(h).

This converter operates via capacitive energy transfer. As illustrated in Fig. 2.21, capacitor is connected through to the input source while the switch is in position 2, and source energy is stored in C. When the switch is in position 1, this energy is released through i-j to the load.

The inductor currents and capacitor voltages are defined, with polarities assigned somewhat arbitrarily, in Fig. 2.2()(a). In this section, the principles of inductor volt-second balance and capacitor charge balance are applied to find the dc components of the inductor currents and capacitor voltages. The voltage and current ripple magnitudes are also found.

During the first subinterval, while the switch is in position 1, the converter circuit reduces to Fig. 2.21 (a). The inductor voltages and capacitor currents are:

4 = V.

Vn = - Vj -

Ъ

(2.4s)


+ V, -

*lg. 2,20 Cuk converter: (а) with ideal switch, (b) practical realization using MO.SKET anJ Jiudc.



1 2 3 4 5 6 7 8 [ 9 ] 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300