Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 [ 70 ] 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

(a) *c<0

-v/R

(b) v(0

nC ЛС


0 dT f

Fig, 7.31 Capacitor waveforms for the flyback example: (a) capacitor currenl, (b) tupacjtor vollage.

{.,(0), = dO)[(v,W)-{/(f)),/. By inserting tiiis result into Eq. (7.20), we obtain the averageii intiuctor equation,

v / Ч /л (*))r

I- = CO {v,(()) -d(t) {iit)) R , - dC)

The capacitor waveforms are cotistructed in Fig. 7.21. The average capacitor current is Ibis leads to the averaged capacitor equation

(7.55)

(7.56)

(7.57)

С ~J((j - Д

The converter input current ((/) is sketched in Fig. 7.22.

Its average is

The averaged converter equations (7.56), (7.58) and Fig. 7.22 Input source current waveform, (7.59) are collected below: flyback example.



7.2 The Ba.iic Modeling Appwach

Лт).

- = d\t)

-n---T~

(7.60)

{i,<.t))=d(t)iiit)).,

This is a noiiliiieai set of differential equatioiLS, and hence the next step is to peiturb and linearize, to construct the converter small-signal ac equations. We assume that the converter input voltage v(() and duty cycle i/(f) can be expressed as qitiescent values plits small ac variations, as follows:

dtt)D + d(t)

(7.61)

In response to these inputs, and after all tian.sients have decayed, the average convertei waveforms can also be expressed as quiescent values plus small ac variations:

(4i))j. = V-H!(()

With tliese substitutions, the birge-.signal averaged inductor equation becomes Upon multiplying this expression out and collecting terms, we obtain

(7.62)

(7.63)

§ + \= [DV-iy-DRj) + I flyf)-D + (v, + -/* )(0-DfiJ(l)

Detenus

1 order ac terms (linear) J(f)yt)-K/(t)-(t)f(OR

2 order ac tetnas (nonlinear)

<7.64)

As usual, this equation contains three types of terms. The dc terms contain no time-varying quantities. The first-order ac terms are linear functions ofthe ac variations in the circuit, while the second-order ac terms arc functions of the products of the tie variations. If the small-signal assumptions of Eq. (7.32) arc satisfied, then the sccond-oider terms arc much smaller in magnitude diat the tirst-order terms, and hence can be neglected. The dc terms must satisfy



0 = DV- - DRJ

(7.6S)

This result could also be derived by applying the principle of inductor volt-second balance to the steady-state inductor voltage waveform. The first-order ac terms must satisfy

(7.66)

This is the linearized equation that describes ac variations in the inductor current.

Upon substitution of Eqs. (7.61) aud (7.62) into the averaged capacitor equation (7,60), one

obtains

div + m]

(7.67)

By collecting terms, we obtain

оГ(/)

\dt dt )

(7.68)

Dc terms

1 order ac terms 2 order ac lertn (Unear) (nonlinear)

We neglect the second-order tenns. The dc terms ofEq. (7.68) must satisfy

Dl V > Rj

This result could also be obtained by use of the principle of capacitor charge balance on the steady-state capacitor current waveform. The first-order ac terms ofEq. (7.68) lead to the small-signal ac capacitor equation

dvU) Dt(t) Kt) Idjt) dt R ~ n

Substitution of Eqs. (7.61) and (7.62) into the averaged input current equation (7.60) leads to Upon collecting terms, we obtain

(7.70)

(7.71)

= Df *

Di(t) + Idtj)

Dc term Г order ac term Dc term Г order ac terms 2 order ac term

(linear) (nonlinear)

(7.72)

The dc tenns must satisfy



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 [ 70 ] 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300