Строительный блокнот  Introduction to electronics 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 [ 285 ] 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300


4 <

Fig, C.IO R-C circuit example of Section C.4.i,

wliere Z(j) is llie capacitor inapedance lIsC.

The impedance Zj,(j) is the Thevenin eqiiivalenl impedance seen at the port where the capacitor is cotitiected. As illtistrated in Fig. C. 12(a), this impedance i.s foutid by setting the indepetident souice to zero, and then determining the impedance between the port termitials. The result is:

(C.31)

Figure C.12(b) illustrates determination ofthe impedance Zj). A current source \(s) is connected to the port, in place of the capacitor. In the presence ofthe input v{s\ the current source r(.?) is adjusted so that the output Vj(s) is nulled. Under these null conditions, the impedance Zj) is found as the ratio of v{s) to \{s).

Il is easiest to find Z(i) by first determining the elTecl ofthe null condition on the signals in the circuit. Since is nulled to zero, there is no ctirrent through the resistor Д4. Since is connected in series with Я, there is also no cunent through Д and hence no voltage across R.. Therefore, the voltage V, in Fig. C. 12(b) i.s equal to v, i.e..

j null

Therefore, the voltage v is given by /Д;. The impedance Z is

(C.32)

Fig. C.ll Manipulation of the circuit v{s) Ci ai Fig. C, 10 into the form of Fig. C. I.

1 -ЛЛг

Linear circuit

ЛЛ/-

port



ЛЛг-

port t

ЛЛ/-T-\f\r-

port

4 S V,(S)

null

Fig, C,I2 MeasLueiTient of the quantitLes Z(,!) and Z,)(j): (aJ deter-ininaiioii of Z,j(.v), (b) tleterniination

<>f7 (.v)

(CB)

Note that, in general, the independent sources and ( are nonzero dtiring the measurement. For this example, the null condition implies that the current i(s) flows entirely through the path composed of K, R, and V.

The transfer function G(s) is found by substitution of Eqs. (C.31) and (C.33) into Eq. (С.ЗО):

c(.0 =

a

1 + .vC r2 + Wll(f, +

(CM)

For this example, the result is obtained in standard normalized pole-zero form, because the capacitor is the only dynamic element in the circuit, and because the original conditions, in which the capacitor impedance tends to an open circuit, coincide with dc conditions in the circuit. A similar procedure can be



applied to write Ihe transfer function of a circuii, containing an arbitrary number of reactive elements, in normalized form via an extension of the Extra Elemeni Theorem [3],

C.4.2 An Unmudeled Element

We are told that the transformer-isolated parallel resonant inverter of Fig. C.13 has been designed with the assutnption that the transformer is ideal. The approxitnate sinusoidal analysis techniques of Chapter 19 were employed to inodel the inverter. It is now desired to specify a transformer; this requires that limits be specified on the minimum allowable transformer magnetizing inductance. One way to approach this problem is to view the transformer magnetizing inductance as an extra element, and to derive conditions that guarantee that the presence ofthe transformermagnetizing inductance does not significantly change the tanlc network transfer function G(s).

Figure C.14 illustrates the equivalent circuit model of the inverter, derived using the approximate sintisoidal analysis technique of Section 19.1. The switch network output voltage vДt) is modeled by its fundamental component vil), a sintisoid. The tank transfer function Gis) is given hy:

vjs)

(C,35)

1 :я

Fig. C,I3 Parallel resonant inverter example.

Transfer function

1 : n

Fig. C.14 Equivalent circuit model ofthe tank network, based on the approximate sinusoidal analysis technique.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 [ 285 ] 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300